Microbial transformation of artemisinin by Aspergillus terreus
نویسندگان
چکیده
BACKGROUND Artemisinin (1) and its derivatives are now being widely used as antimalarial drugs, and they also exhibited good antitumor activities. So there has been much interest in the structural modification of artemisinin and its derivatives because of their effective bioactivities. The microbial transformation is a promising route to obtain artemisinin derivatives. The present study focuses on the microbial transformation of artemisinin by Aspergillus terreus. RESULTS During 6 days at 28 °C and 180 rpm, Aspergillus terreus transformed artemisinin to two products. They were identified as 1-deoxyartemisinin (2) and 4α-hydroxy-1-deoxyartemisinin (3) on the basis of their spectroscopic data. CONCLUSIONS The microbial transformation of artemisinin by Aspergillus terreus was investigated, and two products (1-deoxyartemisinin and 4α-hydroxy-1-deoxyartemisinin) were obtained. This study is the first to report on the microbial transformation of artemisinin by Aspergillus terreus.
منابع مشابه
Gentamicin removal in submerged fermentation using the novel fungal strain Aspergillus terreus FZC3
Social concern and awareness of the potential risk posed by environmental residues of antibiotics such as gentamicin in the development of antibiotic resistance genes have increased. The present study used laboratory-scale experiments to develop methods for gentamicin removal from the environment. A fungus, strain FZC3, which could remove gentamicin in submerged fermentation, was isolated from ...
متن کاملExpression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger
BACKGROUND Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger...
متن کاملImproving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain
BACKGROUND Itaconic acid, which has been declared to be one of the most promising and flexible building blocks, is currently used as monomer or co-monomer in the polymer industry, and produced commercially by Aspergillus terreus. However, the production level of itaconic acid hasn't been improved in the past 40 years, and mutagenesis is still the main strategy to improve itaconate productivity....
متن کاملBiotransformation of Artemisinin Mediated through Fungal Strains for Obtaining
Artemisinin, a sesquiterpene lactone, is the active antimalarial constituent of Artemisia annua. Several fungal strains Saccharomyces cerevisiae, Aspergillus flavus, Aspergillus niger and Picchia pastoris were used to biotransform artemisinin. Among these strains, A. flavus was the only microorganism capable of transforming artemisinin to deoxyartemisinin in higher yields than the previous repo...
متن کاملBiotransformation of Progesterone by Whole Cells of Filamentous Fungi Aspergillus brasiliensis
Microbial steroid biotransformation have found wide-reaching application for the production of more precious and functionalized compounds due to their high regio-and stereoselectivity. In this study, the possibility of using filamentous fungi Aspergillus brasiliensis cells in the biotransformation of progesterone (I), a C-21 steroid hormone was studied for the first time.The fungal strain was i...
متن کامل